Arabidopsis genes AS1, AS2, and JAG negatively regulate boundary-specifying genes to promote sepal and petal development.
نویسندگان
چکیده
Boundary formation is crucial for organ development in multicellular eukaryotes. In higher plants, boundaries that separate the organ primordia from their surroundings have relatively low rates of cell proliferation. This cellular feature is regulated by the actions of certain boundary-specifying genes, whose ectopic expression in organs can cause inhibition of organ growth. Here, we show that the Arabidopsis thaliana ASYMMETRIC LEAVES1 and 2 (AS1 and AS2) and JAGGED (JAG) genes function in the sepal and petal primordia to repress boundary-specifying genes for normal development of the organs. Loss-of-function as1 jag and as2 jag double mutants produced extremely tiny sepals and petals. Analysis of a cell-cycle marker HISTONE4 revealed that cell division in sepal primordia of the double mutant was inhibited. Moreover, these abnormal sepals and petals exhibited ectopic overexpression of the boundary-specifying genes PETAL LOSS (PTL) and CUP-SHAPED COTYLEDON1 [corrected] and 2 (CUC1 and CUC2). Loss of PTL or CUC1 and CUC2 functions in the as1 jag background could partially rescue the tiny sepal and petal phenotypes, supporting the model that the tiny sepal/petal phenotypes are caused, at least in part, by ectopic expression of boundary-specifying genes. Together, our data reveal a previously unrecognized fundamental regulation by which AS1, AS2, and JAG act to define sepal and petal from their boundaries.
منابع مشابه
RBE controls microRNA164 expression to effect floral organogenesis.
The establishment and maintenance of organ boundaries are vital for animal and plant development. In the Arabidopsis flower, three microRNA164 genes (MIR164a, b and c) regulate the expression of CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, which encode key transcriptional regulators involved in organ boundary specification. These three miR164 genes are expressed in distinct spatial and temporal domai...
متن کاملNUBBIN and JAGGED define stamen and carpel shape in Arabidopsis.
Differential growth of tissues during lateral organ development is essential for producing variation in shape and size. Previous studies have identified JAGGED (JAG), a gene that encodes a putative C2H2 zinc-finger transcription factor, as a key regulator of shape that promotes growth in lateral organs. Although JAG expression is detected in all floral organs, loss-of-function jag alleles have ...
متن کاملNovel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity.
The shoot apical meristem (SAM) of seed plants is the site at which lateral organs are formed. Once organ primordia initiate from the SAM, they establish polarity along the adaxial-abaxial, proximodistal and mediolateral axes. Among these three axes, the adaxial-abaxial polarity is of primary importance in leaf patterning. In leaf development, once the adaxial-abaxial axis is established within...
متن کاملAntagonistic Gene Activities Determine the Formation of Pattern Elements along the Mediolateral Axis of the Arabidopsis Fruit
The Arabidopsis fruit mainly consists of a mature ovary that shows three well defined territories that are pattern elements along the mediolateral axis: the replum, located at the medial plane of the flower, and the valve and the valve margin, both of lateral nature. JAG/FIL activity, which includes the combined functions of JAGGED (JAG), FILAMENTOUS FLOWER (FIL), and YABBY3 (YAB3), contributes...
متن کاملThe Putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and MicroRNA165/166 in Arabidopsis leaf development.
The Arabidopsis thaliana ASYMMETRIC LEAVES1 (AS1) and AS2 genes are important for repressing class I KNOTTED1-like homeobox (KNOX) genes and specifying leaf adaxial identity in leaf development. RNA-dependent RNA polymerases (RdRPs) are critical for posttranscriptional and transcriptional gene silencing in eukaryotes; however, very little is known about their functions in plant development. Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 146 2 شماره
صفحات -
تاریخ انتشار 2008